Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 10(10)2020 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993102

RESUMO

Sphaerostilbella toxica is a mycoparasitic fungus that can be found parasitizing wood-decay basidiomycetes in the southern USA. Organic solvent extracts of fermented strains of S. toxica exhibited potent antimicrobial activity, including potent growth inhibition of human pathogenic yeasts Candida albicans and Cryptococcus neoformans, the respiratory pathogenic fungus Aspergillus fumigatus, and the Gram-positive bacterium Staphylococcus aureus. Bioassay-guided separations led to the purification and structure elucidation of new peptaibiotics designated as sphaerostilbellins A and B. Their structures were established mainly by analysis of NMR and HRMS data, verification of amino acid composition by Marfey's method, and by comparison with published data of known compounds. They incorporate intriguing structural features, including an N-terminal 2-methyl-3-oxo-tetradecanoyl (MOTDA) residue and a C-terminal putrescine residue. The minimal inhibitory concentrations for sphaerostilbellins A and B were measured as 2 µM each for C. neoformans, 1 µM each for A. fumigatus, and 4 and 2 µM, respectively, for C. albicans. Murine macrophage cells were unaffected at these concentrations.


Assuntos
Antibacterianos/química , Anti-Infecciosos/química , Antifúngicos/farmacologia , Basidiomycota/química , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antifúngicos/química , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/patogenicidade , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/patogenicidade
2.
J Nat Prod ; 83(9): 2718-2726, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32881504

RESUMO

Campafungin A is a polyketide that was recognized in the Candida albicans fitness test due to its antiproliferative and antihyphal activity. Its mode of action was hypothesized to involve inhibition of a cAMP-dependent PKA pathway. The originally proposed structure appeared to require a polyketide assembled in a somewhat unusual fashion. However, structural characterization data were never formally published. This background stimulated a reinvestigation in which campafungin A and three closely related minor constituents were purified from fermentations of a strain of the ascomycete fungus Plenodomus enteroleucus. Labeling studies, along with extensive NMR analysis, enabled assignment of a revised structure consistent with conventional polyketide synthetic machinery. The structure elucidation of campafungin A and new analogues encountered in this study, designated here as campafungins B, C, and D, is presented, along with a proposed biosynthetic route. The antimicrobial spectrum was expanded to methicillin-resistant Staphylococcus aureus, Candida tropicalis, Candida glabrata, Cryptococcus neoformans, Aspergillus fumigatus, and Schizosaccharomyces pombe, with MICs ranging as low as 4-8 µg mL-1 in C. neoformans. Mode-of-action studies employing libraries of C. neoformans mutants indicated that multiple pathways were affected, but mutants in PKA/cAMP pathways were unaffected, indicating that the mode of action was distinct from that observed in C. albicans.


Assuntos
Candida albicans/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Ascomicetos/química , Ascomicetos/metabolismo , Bactérias/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Fermentação , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Policetídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos
3.
PLoS Pathog ; 14(6): e1007126, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29864141

RESUMO

The human fungal pathogen, Cryptococcus neoformans, dramatically alters its cell wall, both in size and composition, upon entering the host. This cell wall remodeling is essential for host immune avoidance by this pathogen. In a genetic screen for mutants with changes in their cell wall, we identified a novel protein, Mar1, that controls cell wall organization and immune evasion. Through phenotypic studies of a loss-of-function strain, we have demonstrated that the mar1Δ mutant has an aberrant cell surface and a defect in polysaccharide capsule attachment, resulting in attenuated virulence. Furthermore, the mar1Δ mutant displays increased staining for exposed cell wall chitin and chitosan when the cells are grown in host-like tissue culture conditions. However, HPLC analysis of whole cell walls and RT-PCR analysis of cell wall synthase genes demonstrated that this increased chitin exposure is likely due to decreased levels of glucans and mannans in the outer cell wall layers. We observed that the Mar1 protein differentially localizes to cellular membranes in a condition dependent manner, and we have further shown that the mar1Δ mutant displays defects in intracellular trafficking, resulting in a mislocalization of the ß-glucan synthase catalytic subunit, Fks1. These cell surface changes influence the host-pathogen interaction, resulting in increased macrophage activation to microbial challenge in vitro. We established that several host innate immune signaling proteins are required for the observed macrophage activation, including the Card9 and MyD88 adaptor proteins, as well as the Dectin-1 and TLR2 pattern recognition receptors. These studies explore novel mechanisms by which a microbial pathogen regulates its cell surface in response to the host, as well as how dysregulation of this adaptive response leads to defective immune avoidance.


Assuntos
Parede Celular/enzimologia , Criptococose/imunologia , Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Animais , Parede Celular/imunologia , Células Cultivadas , Criptococose/microbiologia , Criptococose/patologia , Cryptococcus neoformans/patogenicidade , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Feminino , Proteínas Fúngicas/genética , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transporte Proteico , beta-Glucanas/imunologia
4.
Sci Rep ; 8(1): 5209, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29581526

RESUMO

The human fungal pathogen Cryptococcus neoformans undergoes many phenotypic changes to promote its survival in specific ecological niches and inside the host. To explore the role of chromatin remodeling on the expression of virulence-related traits, we identified and deleted seven genes encoding predicted class I/II histone deacetylases (HDACs) in the C. neoformans genome. These studies demonstrated that individual HDACs control non-identical but overlapping cellular processes associated with virulence, including thermotolerance, capsule formation, melanin synthesis, protease activity and cell wall integrity. We also determined the HDAC genes necessary for C. neoformans survival during in vitro macrophage infection and in animal models of cryptococcosis. Our results identified the HDA1 HDAC gene as a central mediator controlling several cellular processes, including mating and virulence. Finally, a global gene expression profile comparing the hda1Δ mutant versus wild-type revealed altered transcription of specific genes associated with the most prominent virulence attributes in this fungal pathogen. This study directly correlates the effects of Class I/II HDAC-mediated chromatin remodeling on the marked phenotypic plasticity and virulence potential of this microorganism. Furthermore, our results provide insights into regulatory mechanisms involved in virulence gene expression that are likely shared with other microbial pathogens.


Assuntos
Criptococose/genética , Cryptococcus neoformans/enzimologia , Histona Desacetilases/genética , Virulência/genética , Animais , Parede Celular , Criptococose/enzimologia , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica/genética , Genoma Fúngico/genética , Histona Desacetilases/classificação , Humanos , Macrófagos/microbiologia , Macrófagos/patologia
5.
mSphere ; 1(2)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303728

RESUMO

Prenyltransferase enzymes promote the membrane localization of their target proteins by directing the attachment of a hydrophobic lipid group at a conserved C-terminal CAAX motif. Subsequently, the prenylated protein is further modified by postprenylation processing enzymes that cleave the terminal 3 amino acids and carboxymethylate the prenylated cysteine residue. Many prenylated proteins, including Ras1 and Ras-like proteins, require this multistep membrane localization process in order to function properly. In the human fungal pathogen Cryptococcus neoformans, previous studies have demonstrated that two distinct forms of protein prenylation, farnesylation and geranylgeranylation, are both required for cellular adaptation to stress, as well as full virulence in animal infection models. Here, we establish that the C. neoformans RAM1 gene encoding the farnesyltransferase ß-subunit, though not strictly essential for growth under permissive in vitro conditions, is absolutely required for cryptococcal pathogenesis. We also identify and characterize postprenylation protease and carboxyl methyltransferase enzymes in C. neoformans. In contrast to the prenyltransferases, deletion of the genes encoding the Rce1 protease and Ste14 carboxyl methyltransferase results in subtle defects in stress response and only partial reductions in virulence. These postprenylation modifications, as well as the prenylation events themselves, do play important roles in mating and hyphal transitions, likely due to their regulation of peptide pheromones and other proteins involved in development. IMPORTANCE Cryptococcus neoformans is an important human fungal pathogen that causes disease and death in immunocompromised individuals. The growth and morphogenesis of this fungus are controlled by conserved Ras-like GTPases, which are also important for its pathogenicity. Many of these proteins require proper subcellular localization for full function, and they are directed to cellular membranes through a posttranslational modification process known as prenylation. These studies investigate the roles of one of the prenylation enzymes, farnesyltransferase, as well as the postprenylation processing enzymes in C. neoformans. We demonstrate that the postprenylation processing steps are dispensable for the localization of certain substrate proteins. However, both protein farnesylation and the subsequent postprenylation processing steps are required for full pathogenesis of this fungus.

6.
Eukaryot Cell ; 14(7): 626-35, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25862155

RESUMO

The localization and specialized function of Ras-like proteins are largely determined by posttranslational processing events. In a highly regulated process, palmitoyl groups may be added to C-terminal cysteine residues, targeting these proteins to specific membranes. In the human fungal pathogen Cryptococcus neoformans, Ras1 protein palmitoylation is essential for growth at high temperature but is dispensable for sexual differentiation. Ras1 palmitoylation is also required for localization of this protein on the plasma membrane. Together, these results support a model in which specific Ras functions are mediated from different subcellular locations. We therefore hypothesize that proteins that activate Ras1 or mediate Ras1 localization to the plasma membrane will be important for C. neoformans pathogenesis. To further characterize the Ras1 signaling cascade mediating high-temperature growth, we have identified a family of protein S-acyltransferases (PATs), enzymes that mediate palmitoylation, in the C. neoformans genome database. Deletion strains for each candidate gene were generated by homogenous recombination, and each mutant strain was assessed for Ras1-mediated phenotypes, including high-temperature growth, morphogenesis, and sexual development. We found that full Ras1 palmitoylation and function required one particular PAT, Pfa4, and deletion of the PFA4 gene in C. neoformans resulted in altered Ras1 localization to membranes, impaired growth at 37°C, and reduced virulence.


Assuntos
Acetiltransferases/metabolismo , Criptococose/microbiologia , Cryptococcus neoformans/fisiologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Lipoilação , Virulência , Acetiltransferases/genética , Animais , Western Blotting , Membrana Celular/metabolismo , Criptococose/mortalidade , Criptococose/patologia , Feminino , Proteínas Fúngicas/genética , Recombinação Homóloga , Humanos , Camundongos , Camundongos Endogâmicos A , Mutação/genética , Transdução de Sinais , Proteínas ras/metabolismo
7.
Eukaryot Cell ; 12(11): 1462-71, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24014765

RESUMO

Proper cellular localization is required for the function of many proteins. The CaaX prenyltransferases (where CaaX indicates a cysteine followed by two aliphatic amino acids and a variable amino acid) direct the subcellular localization of a large group of proteins by catalyzing the attachment of hydrophobic isoprenoid moieties onto C-terminal CaaX motifs, thus facilitating membrane association. This group of enzymes includes farnesyltransferase (Ftase) and geranylgeranyltransferase-I (Ggtase-1). Classically, the variable (X) amino acid determines whether a protein will be an Ftase or Ggtase-I substrate, with Ggtase-I substrates often containing CaaL motifs. In this study, we identify the gene encoding the ß subunit of Ggtase-I (CDC43) and demonstrate that Ggtase-mediated activity is not essential. However, Cryptococcus neoformans CDC43 is important for thermotolerance, morphogenesis, and virulence. We find that Ggtase-I function is required for full membrane localization of Rho10 and the two Cdc42 paralogs (Cdc42 and Cdc420). Interestingly, the related Rac and Ras proteins are not mislocalized in the cdc43Δ mutant even though they contain similar CaaL motifs. Additionally, the membrane localization of each of these GTPases is dependent on the prenylation of the CaaX cysteine. These results indicate that C. neoformans CaaX prenyltransferases may recognize their substrates in a unique manner from existing models of prenyltransferase specificity. It also suggests that the C. neoformans Ftase, which has been shown to be more important for C. neoformans proliferation and viability, may be the primary prenyltransferase for proteins that are typically geranylgeranylated in other species.


Assuntos
Alquil e Aril Transferases/metabolismo , Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/metabolismo , Alquil e Aril Transferases/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Proteínas Fúngicas/genética , Prenilação de Proteína , Especificidade por Substrato , Virulência/genética
8.
J Biol Chem ; 286(40): 35149-62, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21816822

RESUMO

Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities and differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.


Assuntos
Alquil e Aril Transferases/química , Cryptococcus neoformans/metabolismo , Antifúngicos/farmacologia , Clonagem Molecular , Cristalografia por Raios X/métodos , Desenho de Fármacos , Humanos , Ligantes , Modelos Químicos , Prenilação , Conformação Proteica , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Especificidade por Substrato
9.
PLoS Pathog ; 6(2): e1000776, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20174553

RESUMO

Cryptococcus neoformans is a prevalent human fungal pathogen that must survive within various tissues in order to establish a human infection. We have identified the C. neoformans Rim101 transcription factor, a highly conserved pH-response regulator in many fungal species. The rim101 multiply sign in circle mutant strain displays growth defects similar to other fungal species in the presence of alkaline pH, increased salt concentrations, and iron limitation. However, the rim101 multiply sign in circle strain is also characterized by a striking defect in capsule, an important virulence-associated phenotype. This capsular defect is likely due to alterations in polysaccharide attachment to the cell surface, not in polysaccharide biosynthesis. In contrast to many other C. neoformans capsule-defective strains, the rim101 multiply sign in circle mutant is hypervirulent in animal models of cryptococcosis. Whereas Rim101 activation in other fungal species occurs through the conserved Rim pathway, we demonstrate that C. neoformans Rim101 is also activated by the cAMP/PKA pathway. We report here that C. neoformans uses PKA and the Rim pathway to regulate the localization, activation, and processing of the Rim101 transcription factor. We also demonstrate specific host-relevant activating conditions for Rim101 cleavage, showing that C. neoformans has co-opted conserved signaling pathways to respond to the specific niche within the infected host. These results establish a novel mechanism for Rim101 activation and the integration of two conserved signaling cascades in response to host environmental conditions.


Assuntos
Cryptococcus neoformans/fisiologia , Cryptococcus neoformans/patogenicidade , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Transdução de Sinais/fisiologia , Animais , Southern Blotting , Western Blotting , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Imunoprecipitação , Camundongos , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/metabolismo , Virulência
10.
Infect Immun ; 76(12): 5729-37, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18779335

RESUMO

Rho-GDP dissociation inhibitors (Rho-GDI) are repressors of Rho-type monomeric GTPases that control fundamental cellular processes, such as cytoskeletal arrangement, vesicle trafficking, and polarized growth. We identified and altered the expression of the gene encoding a Rho-GDI homolog in the human fungal pathogen Cryptococcus neoformans and investigated its impact on pathogenicity in animal models of cryptococcosis. Consistent with its predicted function to inhibit and sequester Rho-type GTPases, overexpression of RDI1 results in cytosolic localization of Cdc42. Likely as a result of this finding, RDI1-overexpressing strains exhibited altered morphology compared to that of the wild type, with apparent defects in maintaining proper cell polarity and cytokinesis. RDI1 deletion resulted in increased vacuole size in tissue culture medium and aberrant cell morphology at neutral pH. Maintenance of normal cell morphology is vital for C. neoformans pathogenicity. Accordingly, the rdi1Delta mutant strain also showed reduced intracellular survival in macrophages and severe attenuation of virulence in two murine models of cryptococcosis. This reduction in virulence of the rdi1Delta mutant occurs in the absence of major growth defects in rich medium and with classical virulence-associated phenotypes.


Assuntos
Criptococose/genética , Cryptococcus neoformans/fisiologia , Cryptococcus neoformans/patogenicidade , Inibidores de Dissociação do Nucleotídeo Guanina/fisiologia , Sequência de Aminoácidos , Animais , Polaridade Celular/genética , Citocinese/genética , Macrófagos/microbiologia , Camundongos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Transporte Proteico/genética , Virulência/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico
11.
Eukaryot Cell ; 5(7): 1147-56, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16835458

RESUMO

The Cryptococcus neoformans NRG1 gene was identified using gene microarrays to define putative transcription factor genes regulated by the cyclic AMP (cAMP) signal transduction pathway. Disruption of NRG1 results in delayed capsule formation and mating, two phenotypes that are directly controlled by cAMP signaling. Putative targets of the Nrg1 transcription factor were identified using a second genome microarray to define differences in the transcriptomes of the wild-type and nrg1 mutant strains. These experiments implicate Nrg1 in the transcriptional control of multiple genes involved in carbohydrate metabolism and substrate oxidation, as well as the UGD1 gene encoding a UDP-glucose dehydrogenase required for polysaccharide capsule production and cell wall integrity. In addition to being under transcriptional control of the cAMP pathway, Nrg1 contains a putative protein kinase A phosphorylation site; mutation of this motif results in reduced Nrg1 activity. Consistent with prior studies in hypocapsular mutants, the nrg1 mutant strain is attenuated in an animal model of disseminated cryptococcal disease.


Assuntos
Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/fisiologia , Cryptococcus neoformans/patogenicidade , Proteínas de Ligação a DNA/fisiologia , Estresse Oxidativo , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Animais , Disponibilidade Biológica , Parede Celular/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Marcação de Genes , Genes Fúngicos Tipo Acasalamento , Glucose/metabolismo , Camundongos , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Organismos Geneticamente Modificados/anormalidades , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA